535 research outputs found

    Enclosure Rather Than Topography Enhances the Soil Ecological Stoichiometry in Typical Steppe on the Loess Plateau, China

    Get PDF
    Grassland is one of the largest terrestrial ecosystems in the world, a large part of which is distributed in varied topography. And grazing and enclosure are the main ways to use this part. Grazing changes the soil structure through feeding, trampling and excreta return, thus affects the soil nutrients. The aspect mainly affects soil temperature and moisture by affecting solar radiation. The slope affects soil nutrients by affecting surface runoff. Water and temperature are the main factors affecting soil nutrients. We carried out to explore the effect of enclosure years and topography on soil ecological stoichiometry. The results showed that: soil organic carbon density, soil nitrogen density and soil phosphorus density increased with the increasing enclosure years and decreased with the increasing slope. Soil N/P (ratio between soil nitrogen density and soil phosphorus density) increased with increasing the enclosure years and the slope while soil C/N (ratio between soil organic carbon density and soil nitrogen density) decreased. Soil C/P (ratio between soil organic carbon density and soil phosphorus density) increased with the increasing enclosure years, however the trend with slope change was not obvious. The enclosure of sunny slope is more beneficial to soil nutrient accumulation

    Evaluating the Determinants of Young Runners' Continuance Intentions toward Wearable Devices

    Get PDF
    Running has gained popularity as a fitness activity in China, with a growing number of young runners utilizing wearable devices to monitor their running routines and engage in quantified self-practices. The continuous evolution of wearable devices in terms of products and services has expanded the choices available to young runners. Therefore, there is a need to analyze the factors influencing the continuance intention of young runners, providing insights into how to promote the sustained growth of these products or services in the market. This study is grounded in the Technology Acceptance Model and the Theory of Planned Behavior, with an extension incorporating the quantified self to explore the impact of users' continuance intentions to use wearable devices. A survey was conducted among 468 young runners who already used wearable devices, and the data collected were analyzed using PLS-SEM. The results indicate that perceived usefulness and attitudes from the Technology Acceptance Model positively influence intentions for continued use. Additionally, subjective norms according to the Theory of Planned Behavior positively influence continuance use intentions. However, perceived behavioral control does not have a significant effect on continuance use intentions. Conversely, the Quantified-Self positively influences continuance use intentions and partially mediates the relationship between perceived usefulness and continuance use intentions. This research has several theoretical implications for the Theory of Planned Behavior, the Technology Acceptance Model, and the Quantified-Self research construct. Moreover, this study has practical implications for practitioners concerning the adoption and acceptance of wearable devices by young people. This approach enables practitioners to target and implement precise strategies to meet the current demands of the young runner market. Doi: 10.28991/HIJ-2023-04-04-02 Full Text: PD

    An artificial bee colony-based hybrid approach for waste collection problem with midway disposal pattern

    Get PDF
    This paper investigates a waste collection problem with the consideration of midway disposal pattern. An artificial bee colony (ABC)-based hybrid approach is developed to handle this problem, in which the hybrid ABC algorithm is proposed to generate the better optimum-seeking performance while a heuristic procedure is proposed to select the disposal trip dynamically and calculate the carbon emissions in waste collection process. The effectiveness of the proposed approach is validated by numerical experiments. Experimental results show that the proposed hybrid approach can solve the investigated problem effectively. The proposed hybrid ABC algorithm exhibits a better optimum-seeking performance than four popular metaheuristics, namely a genetic algorithm, a particle swarm optimization algorithm, an enhanced ABC algorithm and a hybrid particle swarm optimization algorithm. It is also found that the midway disposal pattern should be used in practice because it reduces the carbon emission at most 7.16% for the investigated instances

    Study on Thermal Conductivity Methane Sensor Constant Temperature Detection Method

    Get PDF
    The thermal conductivity methane sensor can detect methane concentration that measures the thermal conductivity coefficient of the measured methane different from the background gas. This sensor has advantages of detection of a variety of gases, large measuring range, stability, long working life, but also has defects, such as poor detection accuracy, sensitivity affected by ambient temperature and sensor temperature, the defect limits a wide applications of the sensor. This paper analyzes the theory of thermal conductivity methane sensor and method of measurement, proposes thermal conductivity methane sensor constant temperature detection method, and experimentally validates the feasibility of ambient temperature compensation. Experimental results show that the method effectively reduces the effect of ambient temperature on measuring accuracy

    CDCA2 Inhibits Apoptosis and Promotes Cell Proliferation in Prostate Cancer and Is Directly Regulated by HIF-1α Pathway.

    Get PDF
    Prostate cancer (PCa) is a major serious malignant tumor and is commonly diagnosed in older men. Identification of novel cancer-related genes in PCa is important for understanding its tumorigenesis mechanism and developing new therapies against PCa. Here, we used RNA sequencing to identify the specific genes, which are upregulated in PCa cell lines and tissues. The cell division cycle associated protein (CDCA) family, which plays a critical role in cell division and proliferation, is upregulated in the PCa cell lines of our RNA-Sequencing data. Moreover, we found that CDCA2 is overexpressed, and its protein level positively correlates with its histological grade, clinical stage, and Gleason Score. CDCA2 was further found to be upregulated and correlated with poor prognosis and patient survival in multiple cancer types in The Cancer Genome Atlas (TCGA) dataset. The functional study suggests that inhibition of CDCA2 will lead to apoptosis and lower proliferation in vitro. Silencing of CDCA2 also repressed tumor growth in vivo. Loss of CDCA2 affects several oncogenic pathways, including MAPK signaling. In addition, we further demonstrated that CDCA2 was induced in hypoxia and directly regulated by the HIF-1α/Smad3 complex. Thus, our data indicate that CDCA2 could act as an oncogene and is regulated by hypoxia and the HIF-1αpathway. CDCA2 may be a useful prognostic biomarker and potential therapeutic target for PCa

    Effect of Slightly Acidic Electrolyzed Water on Chlorophyll Degradation in Postharvest Broccoli

    Get PDF
    To explore the effect of slightly acidic electrolyzed water (SAEW) on chlorophyll degradation in postharvest broccoli, the pattern of changes in the color, total chlorophyll content, chlorophyll derivative content, chlorophyll degrading enzyme activities, and key chlorophyll metabolism-related gene expression of postharvest broccoli after treatment with 50 mg/L SAEW was analyzed. The results showed that SAEW treatment could effectively slow down the degradation of total chlorophyll, maintain the contents of chlorophyll derivatives chlorophyll a, chlorophyll b, chlorophyllide a, chlorophyllide b, pheophorbide a, and pheophytin a, and delay the increase in the activities of chlorophyll metabolizing enzymes, Mg-dechelatase, pheophytinase, and pheophorbide an oxygenase in postharvest broccoli. Meanwhile, it significantly inhibited the expression of the genes encoding chlorophyll b reductase, chlorophyllase 1, chlorophyllase 2, chlorosis protein, pheophytinase, pheophorbide an oxygenase, red chlorophyll catabolite reductase, and aging specific cysteine protease, thereby allowing color protection and freshness preservation. In conclusion, SAEW can be used as an effective method to delay postharvest chlorophyll degradation and inhibit yellowing and senescence in broccoli

    Incorporation and evolution of ZrO2 nano-particles in Pt-modified aluminide coating for high temperature applications

    Get PDF
    ZrO2 nano-particles were incorporated into electro-deposited PtAl coatings in an attempt to enhance their performance by exploiting the effect of reactive element oxides. PtAl coatings with and without ZrO2 particles were deposited onto three commercially available Ni-based superalloys: Mar-M247, Mar-M246 and Inconel 718. After aluminising and annealing, thermal cycling oxidation tests were carried out to evaluate the influence of ZrO2 addition and substrate composition. Cross-sectional SEM images were obtained to characterise the coatings after deposition, after heat treatment and after 200 thermal cycles. The addition of ZrO2 particles to PtAl coatings on Mar-M-246 and Inconel 718 appeared to increase the growth of thermally grown oxide and reduce its rumpling. However, such effects were not observed for the addition of ZrO2 particles to the PtAl coatings on Mar-M247. The analysis of the coatings on different substrates revealed and elucidated the interactions between Hf, Al and ZrO2, providing better understanding of reactions of ZrO2 and the influence of the substrate on bond coat behaviour
    • …
    corecore